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Silicon clusters ($) can be considered as “bridging” isolated global-minimum structure of SW & and sw25-19 a prolate
Si atoms and nanocrystalline quantum do®onsiderable experi- structure, is the 19th most stable isomer.
mental and theoretical efforts have been devoted to determine Next, we performed geometry optimization for the top 20 most
geometric structures of small to mid-sized silicon clusters. To date, stable isomers of SW &iand Sjs using Gaussian 98 quantum
the global (potential-energy) minima of small silicon clusters)(Si  chemistry softwar€ at the B3LYP/6-31G(d) level of density-
up ton = 11 have been well established through all-electron functional theory. For symmetric SW isomers, we slightly perturbed
molecular-orbital calculations and ab initio simulated-annealing their structures to ensure that the ab initio geometry optimization
searches Measurement of the mobility of mid-sized silicon cation has no symmetry constraint. Harmonic vibrational frequency
clusters Sit indicates that both prolate and more spherical-like analysis was also performed to ensure the optimized structures are
isomers can coexist over the size range ok2% < 332 Subsequent truly stable. We then calculated the energy at the coupled-cluster
annealing allows prolate isomer to convert into spherical-like isomer single and double substitutions [CCSD/6-31G(d)] level, adding the
for n > 30. Measurement of the ionization potentials (IPs) for zero-point energy correction. As a result, we find a new lowest-
neutral clusters {ishows a marked change in IP fram= 21 to energy isomer for $j (213 as well as one for & (258). Note
22 (then the IP levels off fon = 22)2 The large IP change may that the starting geometric structure Ritais sw21-3 the starting
suggest that the “more spherical” clusters become energetically morestructure for25a is sw25-1 and that for25c is sw25-19 Both
favorable fom > 22. Thus far, this measurement has not yet been lowest-energy isomers show quite high degrees of symmetry.
supported by the lowest-energy structures predicted by theories for
21 < n < 2356 Recently, an unbiased global-minimum search for
Si, (n = 23) by Rata et af,who used a novel single-parent
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evolution algorithm similar to the genetic algorithms use_d by Ho ./'.V‘\/;/'.‘/‘
et al.? suggested that the lowest-energy structures o{&i < n \‘_/_‘.%/;Q\./

< 23) all have prolate structure as they are all built upon stacks of
Sig in the tricapped-trigonal-prism motif. However, on the basis of
guantum Monte Carlo calculations, Mitas et’dbund that the
lowest-energy spherical-like isomer is more stable than the lowest-
energy prolate isomer for §i In this Communication, we present
an approach that can be very efficient to locate the lowest-energy
geometry for certain mid-sized silicon clusters such as &id

Sirs. The two newly found Si and Sjs isomers are appreciably
lower in energy than any previously reported, and they are more
spherical-like.

Our approach takes a combined molecular mechanics/quantum
mechanics procedure. First, we employed the basin-hopping global
optimization techniguewith three empirical model potentials for
the bulk, amorphous, and small-sized cluster silfcen the
Stillinger—Weber (SW) potential, the modified-SW (MSW) po-
tential, and the Gong potentiat to locate the global-minimum
structures for Si(n = 21—30).1° The MSW potential has a slightly
stronger three-body interaction than the SW potential, which favors
the tetrahedral bonding. We previously reported that if the global-

minimum geometries based on the SW and MSW potentials are

the same, the resulting global-minimum clusters are typically lower
in energy (per atom) than their nearest-neighbor clusfegame

of these nearly identical SW and MSW global-minimum clusters
can yield very low-energy isomers after ab initio geometry
optimizationl® However, the Gong clusters generally yield isomers
with much higher energy. It is known that the selection of good

We also display the isomers whose structure is optimized at the
B3LYP/6-31G(d)level with the starting structures the same as
various previously found lowest-energy structures. The prolate
structure21b is based on the lowest-energy structure obtained by
Rata et af another prolate structulcis based on a low-energy
isomer with C,, symmetry suggested by Ho et %alAfter the
geometry optimization at the B3LYP/6-31G(d) level, the final

starting structures can be very important in searching for the global geometry of21cis somewhat different from the original one. As
minima, particularly for mid- and large-sized clusters, as the number reported previously? the spherical-like isome21d can be obtained
of possible isomers increases exponentially with the number of on the basis of the starting structils®21-1 and it resembles the

atoms.sw21-1is the global-minimum structure of SW .gi and
sw21-3is the third most stable SW Siisomer; sw25-1is the
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ground-state isomer reported by Pederson ét @hble 1 shows
that the more spherical-like isom2tais lower in energy than the
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Table 1. Relative Energy of the Low-Lying Isomers from That of
the Lowest-Energy Isomer, and Their lonization Potentials

isomers B3LYP/6-31G*[eV] CCSD/6-31G*eV] IP [eV]
2la 0.000 0.000 6.853
21b 0.411 0.586 7.027
21c 0.575 0.817 7.094
21d 0.733 1.127 6.597
25a 0.000 0.000 6.488
25b 0.369 0.527 6.853
25¢ 0.393 0.635 6.212
25d 0.781 0.690 6.499

prolate isomer21b and21c Table 1 also shows the vertical IPs
calculated at the B3LYP/6-31G(d) level, which are in good
agreement with the experiment (6:86.94 eV)?#

For Sbs, the prolate structur@5b and spherical-like structure
25d are obtained on the basis of the starting structures reported by
Mitas et al” Using all-electron quantum Monte Carlo calculations,
Mitas et al. found thaR5d is slightly lower in energy tha5h.
Here, a new low-energy prolate struct@%cis found that is based
onsw25-19 We also optimized another low-energy prolate structure
25e5 Yet 25egives four imaginary frequencies. The new spherical-
like isomer25ais lower in energy than isome2sb and25d (Table

explanations have been put fortk Both invoke the idea that
endohedral atoms may play a key role to the structural transition.
Here, both new lowest-energy isome2d¢a and 25a entail an
endohedral atom. Hence, our results support the notion that the
prolate-to-spherical-like structural transition occurs when the Si
atoms prefer to be organized into two shells with the inner shell
being the endohedral atoth.

In summary, the possible lowest-energy geometry ef Snd
Sips is found on the basis of the starting structures obtained via the
global search for nearly identical low-energy SW and MSW
structures. The fact that the SW and MSW potentials (obtained by
fitting to bulk silicon properties) can provide good starting structures
for certain mid-sized silicon clusters may signify the onset of some
bulk-like properties in these clusters. Indeed, the new lowest-energy
isomers21laand25aexhibit Si(111) surface-like structure. More-
over,25aand, to some exten?laare spherical-like. This suggests
that the prolate-to-spherical-like structural transition is likely to
occur in the range of 2%k n < 25.
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work was supported by grants from NSF (X.C.Z.) and by the

1). Table 1 also shows the calculated IPs which agree reasonablyrResearch Computing Facility at UNL.

with the experiment (5.985.95 eV)* A good reason foR5ato be
a leading candidate of the global minimum is that its structure

somewhat resembles that of the Si(111) surface, a well-known stable

surface structure. Indeed, the high stability of larger clusteys Si
and Sis'® has been previously investigated via the building of

Supporting Information Available: Tables of B3LYP/6-31G(d)
and CCSD/6-31G(d) energies, zero-point corrections, and total energies
(XLS). This material is available free of charge via the Internet at http://
pubs.acs.org.

clusters with the Si(111) surface-like structdté®
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To understand the existence of the prolate-to-spherical-like
structural transition for mid-size silicon clusters, two theoretical
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